GLOBAL EDITION

Precalculus
 Concepts Through Functions
 A Unit Circle Approach to Trigonometry

THIRD EDITION

Michael Sullivan • Michael Sullivan III

Precalculus Concepts Through Functions

A Unit Circle Approach To Trigonometry
 Third Edition
 Global Edition

Michael Sullivan

Chicago State University

Michael Sullivan, III Joliet Junior College

PEARSON

Editor in Chief: Anne Kelly
Acquisitions Editor: Dawn Murrin
Assistant Editor: Joseph Colella
Senior Managing Editor: Karen Wernholm
Associate Managing Editor: Tamela Ambush
Senior Production Project Manager: Peggy McMahon
Digital Assets Manager: Marianne Groth
Associate Media Producer: Marielle Guiney
Head, Learning Asset Acquisition, Global Edition: Laura Dent
Assistant Acquisitions Editor, Global Edition: Aditee Agarwal
Asistant Project Editor, Global Edition: Mrithyunjayan Nilayamgode
Associate Print \& Media Editor, Global Edition: Anuprova
Dey Chowdhuri**
Senior Manufacturing Controller, Production, Global Edition: Trudy Kimber

QA Manager, Assessment Content: Marty Wright
Senior Marketing Manager: Michelle Cook
Marketing Manager: Peggy Sue Lucas
Marketing Assistant: Justine Goulart
Senior Author Support/Technology Specialist: Joe Vetere
Procurement Manager: Vincent Scelta
Procurement Specialist: Debbie Rossi
Text Design: Tamara Newnam
Production Coordination, Associate Director of Design,
USHE EMSS/HSC/EDU: Andrea Nix
Image Manager: Rachel Youdelman
Photo Research: Integra, Inc.
Text Permissions Liaison Manager: Joseph Croscup
Art Director: Heather Scott
Cover Art: © Laborant/Shutterstock
Cover Design:

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England
and Associated Companies throughout the world
Visit us on the World Wide Web at:
www.pearsonglobaleditions.com
© Pearson Education Limited 2015
The rights of Michael Sullivan and Michael Sullivan, III to be identified as the authors of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.
Authorized adaptation from the United States edition, entitled Precalculus: Concepts through Functions, A Unit Circle Approach to Trigonometry, 3rd edition, ISBN 978-0-321-93104-7, by Michael Sullivan and Michael Sullivan, III, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS.
All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.
The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

ISBN 10: 1-292-05874-9
ISBN 13: 978-1-292-05874-0
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
109876543211413121110
Typeset in Times Ten by Cenveo ${ }^{\circledR}$ Publisher Services
Printed and bound by Courier Kendallville in The United States of America
For Michael S., Kevin, and Marissa (Sullivan)Shannon, Patrick, and Ryan (Murphy)Maeve, Sean, and Nolan (Sullivan)Kaleigh, Billy, and Timmy (O'Hara)The Next Generation

Contents

To the Student 15
Preface to the Instructor 17
Prepare for Class "Read the Book" 21
Practice "Work the Problems" 22
Review "Study for Quizzes and Tests" 23
Resources for Success 24
Applications Index 25
F Foundations: A Prelude to Functions 33
F. 1 The Distance and Midpoint Formulas 34
Use the Distance Formula •Use the Midpoint Formula
F. 2 Graphs of Equations in Two Variables; Intercepts; Symmetry Graph Equations by Plotting Points • Find Intercepts from a Graph • Find Intercepts from an Equation • Test an Equation for Symmetry • Know How to Graph Key Equations
F. 3 Lines 51
Calculate and Interpret the Slope of a Line • Graph Lines Given a Point and the Slope • Find the Equation of a Vertical Line • Use the Point-Slope Form of a Line; Identify Horizontal Lines • Find the Equation of a Line Given Two Points • Write the Equation of a Line in Slope-Intercept Form

- Identify the Slope and y-Intercept of a Line from Its Equation • Graph Lines Written in General Form Using Intercepts • Find Equations of Parallel Lines • Find Equations of Perpendicular Lines
F. 4 Circles 66
Write the Standard Form of the Equation of a Circle • Graph a Circle - Work with the General Form of the Equation of a Circle
Chapter Project 73
1 Functions and Their Graphs 74
1.1 Functions 75
Determine Whether a Relation Represents a Function \bullet Find the Value of a Function • Find the Domain of a Function Defined by an Equation \bullet Form the Sum, Difference, Product, and Quotient of Two Functions
1.2 The Graph of a Function 88
Identify the Graph of a Function - Obtain Information from or about the Graph of a Function
1.3 Properties of Functions 98Determine Even and Odd Functions from a Graph • Identify Even andOdd Functions from the Equation • Use a Graph to Determine Where aFunction is Increasing, Decreasing, or Constant • Use a Graph to LocateLocal Maxima and Local Minima • Use a Graph to Locate the AbsoluteMaximum and the Absolute Minimum • Use a Graphing Utility to ApproximateLocal Maxima and Local Minima and to Determine Where a Function isIncreasing or Decreasing • Find the Average Rate of Change of a Function
1.4 Library of Functions; Piecewise-defined Functions 110
Graph the Functions Listed in the Library of Functions • Graph Piecewise-defined Functions
1.5 Graphing Techniques: Transformations 121
Graph Functions Using Vertical and Horizontal Shifts • Graph Functions Using Compressions and Stretches • Graph Functions Using Reflections about the x-Axis and the y-Axis
1.6 Mathematical Models: Building Functions 133
Build and Analyze Functions
1.7 Building Mathematical Models Using Variation 138
Construct a Model Using Direct Variation • Construct a Model Using Inverse Variation • Construct a Model Using Joint or Combined Variation
Chapter Review 143
Chapter Test 147
Chapter Projects 148
2 Linear and Quadratic Functions 150
2.1 Properties of Linear Functions and Linear Models 151
Graph Linear Functions • Use Average Rate of Change to Identify Linear Functions • Determine Whether a Linear Function Is Increasing, Decreasing or Constant •Find the Zero of a Linear Function • Build Linear Models from Verbal Descriptions
2.2 Building Linear Models from Data 162
Draw and Interpret Scatter Diagrams • Distinguish between Linear and Nonlinear Relations • Use a Graphing Utility to Find the Line of Best Fit
2.3 Quadratic Functions and Their Zeros 169
Find the Zeros of a Quadratic Function by Factoring • Find the Zeros of a Quadratic Function Using the Square Root Method • Find the Zeros of a Quadratic Function by Completing the Square • Find the Zeros of a Quadratic Function Using the Quadratic Formula \bullet Find the Point of Intersection of Two Functions • Solve Equations That Are Quadratic in Form
2.4 Properties of Quadratic Functions 180
Graph a Quadratic Function Using Transformations • Identify the Vertex and Axis of Symmetry of a Quadratic Function - Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts • Find a Quadratic Function Given Its Vertex and One Other Point • Find the Maximum or Minimum Value of a Quadratic Function
2.5 Inequalities Involving Quadratic Functions 192
Solve Inequalities Involving a Quadratic Function
2.6 Building Quadratic Models from Verbal Descriptions and from Data 196
Build Quadratic Models from Verbal Descriptions •Build Quadratic Models from Data
2.7 Complex Zeros of a Quadratic Function 207
Find the Complex Zeros of a Quadratic Function
2.8 Equations and Inequalities Involving the Absolute Value Function 210Solve Absolute Value Equations • Solve Absolute Value Inequalities
Chapter Review 216
Chapter Test 219
Cumulative Review 220
Chapter Projects 221
3 Polynomial and Rational Functions 223
3.1 Polynomial Functions and Models 224
Identify Polynomial Functions and Their Degree • Graph Polynomial Functions Using Transformations • Identify the Real Zeros of a Polynomial Function and Their Multiplicity • Analyze the Graph of a Polynomial Function • Build Cubic Models from Data
3.2 The Real Zeros of a Polynomial Function 244
Use the Remainder and Factor Theorems • Use Descartes' Rule of Signs to Determine the Number of Positive and the Number of Negative Real Zeros of a Polynomial Function • Use the Rational Zeros Theorem to List the Potential Rational Zeros of a Polynomial Function • Find the Real Zeros of a Polynomial Function • Solve Polynomial Equations • Use the Theorem for Bounds on Zeros • Use the Intermediate Value Theorem
3.3 Complex Zeros; Fundamental Theorem of Algebra 258
Use the Conjugate Pairs Theorem • Find a Polynomial Function with Specified Zeros • Find the Complex Zeros of a Polynomial Function
3.4 Properties of Rational Functions 264
Find the Domain of a Rational Function • Find the Vertical Asymptotes of a Rational Function • Find the Horizontal or Oblique Asymptote of a Rational Function
3.5 The Graph of a Rational Function 275
Analyze the Graph of a Rational Function • Solve Applied Problems Involving Rational Functions
3.6 Polynomial and Rational Inequalities 290
Solve Polynomial Inequalities • Solve Rational Inequalities
Chapter Review 298
Chapter Test 302
Cumulative Review 302
Chapter Projects 303
4 Exponential and Logarithmic Functions 305
4.1 Composite Functions 306
Form a Composite Function • Find the Domain of a Composite Function
4.2 One-to-One Functions; Inverse Functions 314
Determine Whether a Function Is One-to-One • Determine the Inverse of a Function Defined by a Map or a Set of Ordered Pairs • Obtain the Graph of the Inverse Function from the Graph of the Function \bullet Find the Inverse of a Function Defined by an Equation
4.3 Exponential Functions 326
Evaluate Exponential Functions • Graph Exponential Functions • Define the Number $e \bullet$ Solve Exponential Equations
4.4 Logarithmic Functions 343
Change Exponential Statements to Logarithmic Statements and Logarithmic Statements to Exponential Statements • Evaluate Logarithmic Expressions - Determine the Domain of a Logarithmic Function • Graph Logarithmic Functions • Solve Logarithmic Equations
4.5 Properties of Logarithms 356
Work with Properties of Logarithms • Write a Logarithmic Expression as a Sum or Difference of Logarithms - Write a Logarithmic Expression as a Single Logarithm • Evaluate a Logarithm Whose Base Is Neither 10 Nor e
- Graph a Logarithmic Function Whose Base Is Neither 10 Nor e
4.6 Logarithmic and Exponential Equations 365
Solve Logarithmic Equations • Solve Exponential Equations • Solve Logarithmic and Exponential Equations Using a Graphing Utility
4.7 Financial Models 371
Determine the Future Value of a Lump Sum of Money • Calculate Effective Rates of Return • Determine the Present Value of a Lump Sum of Money - Determine the Rate of Interest or the Time Required to Double a Lump Sum of Money
4.8 Exponential Growth and Decay Models; Newton's Law; Logistic Growth and Decay Models 381
Find Equations of Populations That Obey the Law of Uninhibited Growth
- Find Equations of Populations That Obey the Law of Decay • Use Newton's Law of Cooling • Use Logistic Models
4.9 Building Exponential, Logarithmic, and Logistic Models from Data 391
Build an Exponential Model from Data • Build a Logarithmic Model from Data • Build a Logistic Model from Data
Chapter Review 399
Chapter Test 404
Cumulative Review 405
Chapter Projects 406
5 Trigonometric Functions 407
5.1 Angles and Their Measures 408
Convert between Decimals and Degrees, Minutes, Seconds Measures for Angles • Find the Length if an Arc of a Circle • Convert from Degrees to Radians and from Radians to Degrees \bullet Find the Area of a Sector of a Circle •Find the Linear Speed of an Object Traveling in Circular Motion
5.2 Trigonometric Functions: Unit Circle Approach 422
Find the Exact Values of the Trigonometric Functions Using a Point on the Unit Circle • Find the Exact Values of the Trigonometric Functions of Quadrantal Angles • Find the Exact Values of the Trigonometric Functions of $\pi / 4=45^{\circ} \bullet$ Find the Exact Values of the Trigonometric Functions of $\pi / 6=30^{\circ}$ and $\pi / 3=60^{\circ} \bullet$ Find the Exact Values of the Trigonometric Functions for Integer Multiples of $\pi / 6=30^{\circ}, \pi / 4=45^{\circ}$, and $\pi / 3=60^{\circ} \bullet$ Use a Calculator to Approximate the Value of a Trigonometric Function • Use a Circle of Radius r to Evaluate the Trigonometric Functions
5.3 Properties of the Trigonometric Functions 439
Determine the Domain and the Range of the Trigonometric Functions - Determine the Period of the Trigonometric Functions • Determine the Signs of the Trigonometric Functions in a Given Quadrant • Find the Values of the Trigonometric Functions Using Fundamental Identities • Find the Exact Values of the Trigonometric Functions of an Angle Given One of the Functions and the Quadrant of the Angle • Use Even-Odd Properties to Find the Exact Values of the Trigonometric Functions
5.4 Graphs of the Sine and Cosine Functions

Graph Functions of the Form $y=A \sin (\omega x)$ Using Transformations

- Graph Functions of the Form $y=A \cos (\omega x)$ Using Transformations

> - Determine the Amplitude and Period of Sinusoidal Functions \bullet Graph Sinusoidal Functions Using Key Points \bullet Find an Equation for a Sinusoidal Graph
5.5 Graphs of the Tangent, Cotangent, Cosecant, andSecant Functions467Graph Functions of the Form $y=A \tan (\omega x)+B$ and $y=A \cot (\omega x)+B$- Graph Functions of the Form $y=A \csc (\omega x)+B$ and $y=A \sec (\omega x)+B$
5.6 Phase Shift; Sinusoidal Curve Fitting 475
Graph Sinusoidal Functions of the Form $y=A \sin (\omega x-\phi)+B$

- Build Sinusoidal Models from Data
Chapter Review 486
Chapter Test 492
Cumulative Review 492
Chapter Projects 493
Analytic Trigonometry 495
6.1 The Inverse Sine, Cosine, and Tangent Functions 496
Find the Exact Value of an Inverse Sine Function \bullet Find an Approximate Value of an Inverse Sine Function - Use Properties of Inverse Functions to Find Exact Values of Certain Composite Functions • Find the Inverse Function of a Trigonometric Function • Solve Equations Involving Inverse Trigonometric Functions
6.2 The Inverse Trigonometric Functions (Continued) 508
Find the Exact Value of Expressions Involving the Inverse Sine, Cosine, and Tangent Functions \bullet Define the Inverse Secant, Cosecant, and Cotangent Functions •Use a Calculator to Evaluate $\sec ^{-1} x, \csc ^{-1} x$, and $\cot ^{-1} x \bullet$ Write a Trigonometric Expression as an Algebraic Expression
6.3 Trigonometric Equations 514
Solve Equations Involving a Single Trigonometric Function • Solve Trigonometric Equations Using a Calculator • Solve Trigonometric Equations Quadratic in Form • Solve Trigonometric Equations Using Fundamental Identities • Solve Trigonometric Equations Using a Graphing Utility
6.4 Trigonometric Identities 523
Use Algebra to Simplify Trigonometric Expressions • Establish Identities
6.5 Sum and Difference Formulas 531
Use Sum and Difference Formulas to Find Exact Values • Use Sum and
Difference Formulas to Establish Identities • Use Sum and Difference Formulas Involving Inverse Trigonometric Functions • Solve Trigonometric Equations Linear in Sine and Cosine
6.6 Double-angle and Half-angle Formulas 543
Use Double-angle Formulas to Find Exact Values • Use Double-angle Formulas to Establish Identities • Use Half-angle Formulas to Find Exact Values
6.7 Product-to-Sum and Sum-to-Product Formulas 553
Express Products as Sums • Express Sums as Products
Chapter Review 557
Chapter Test 561
Cumulative Review 561
Chapter Projects 562
7 Applications of Trigonometric Functions 563
7.1 Right Triangle Trigonometry; Applications 564
Find the Value of Trigonometric Functions of Acute Angles Using Right Triangles • Use the Complementary Angle Theorem • Solve Right Triangles
- Solve Applied Problems
7.2 The Law of Sines 576
Solve SAA or ASA Triangles • Solve SSA Triangles • Solve Applied Problems
7.3 The Law of Cosines 587
Solve SAS Triangles • Solve SSS Triangles • Solve Applied Problems
7.4 Area of a Triangle 593
Find the Area of SAS Triangles • Find the Area of SSS Triangles
7.5 Simple Harmonic Motion; Damped Motion; Combining Waves 600
Build a Model for an Object in Simple Harmonic Motion • Analyze Simple Harmonic Motion • Analyze an Object in Damped Motion • Graph the Sum of Two Functions
Chapter Review 609
Chapter Test 612
Cumulative Review 613
Chapter Projects 613
8 Polar Coordinates; Vectors 615
8.1 Polar Coordinates 616
Plot Points Using Polar Coordinates • Convert from Polar Coordinates to Rectangular Coordinates - Convert from Rectangular Coordinates to Polar Coordinates • Transform Equations between Polar and Rectangular Forms
8.2 Polar Equations and Graphs 625
Identify and Graph Polar Equations by Converting to Rectangular Equations • Test Polar Equations for Symmetry • Graph Polar Equations by Plotting Points
8.3 The Complex Plane; De Moivre's Theorem 640
Plot Points in the Complex Plane - Convert a Complex Number between Rectangular Form and Polar Form • Find Products and Quotients of Complex Numbers in Polar Form • Use De Moivre's Theorem • Find Complex Roots
8.4 Vectors 648
Graph Vectors • Find a Position Vector • Add and Subtract Vectors Algebraically • Find a Scalar Multiple and the Magnitude of a Vector • Find a Unit Vector • Find a Vector from Its Direction and Magnitude • Model with Vectors
8.5 The Dot Product 662
Find the Dot Product of Two Vectors • Find the Angle between Two Vectors • Determine Whether Two Vectors Are Parallel • Determine Whether Two Vectors Are Orthogonal • Decompose a Vector into Two Orthogonal Vectors • Compute Work
8.6 Vectors in Space 670
Find the Distance between Two Points in Space • Find Position Vectors in Space • Perform Operations on Vectors \bullet Find the Dot Product • Find the Angle between Two Vectors • Find the Direction Angles of a Vector
8.7 The Cross Product
Find the Cross Product of Two Vectors • Know Algebraic Properties of the Cross Product • Know Geometric Properties of the Cross Product • Find a Vector Orthogonal to Two Given Vectors • Find the Area of a Parallelogram679
Chapter Review 685
Chapter Test 688
Cumulative Review 689
Chapter Projects 689Analytic Geometry691
9.1 Conics 692
Know the Names of the Conics
9.2 The Parabola 693
Analyze Parabolas with Vertex at the Origin • Analyze Parabolas with Vertex at $(h, k) \bullet$ Solve Applied Problems Involving Parabolas
9.3 The Ellipse 701
Analyze Ellipses with Center at the Origin • Analyze Ellipses with Center at $(h, k) \bullet$ Solve Applied Problems Involving Ellipses
9.4 The Hyperbola 711
Analyze Hyperbolas with Center at the Origin • Find Asymptotes of Hyperbola • Analyze Hyperbolas with Center at $(h, k) \bullet$ Solve Applied Problems Involving Hyperbolas
9.5 Rotation of Axes; General Form of a Conic 724 Identify a Conic • Use a Rotation of Axes to Transform Equations - Analyze an Equation Using Rotation of Axes • Identify Conics without a Rotation of Axes
9.6 Polar Equations of Conics 731
Analyze and Graph Polar Equations of Conics • Convert the Polar Equation of a Conic to a Rectangular Equation
9.7 Plane Curves and Parametric Equations 737
Graph Parametric Equations • Find a Rectangular Equation for a Curve Defined Parametrically • Use Time as a Parameter in Parametric Equations • Find Parametric Equations for Curves Defined by Rectangular Equations
Chapter Review 749
Chapter Test 752
Cumulative Review 752
Chapter Projects 753
10 Systems of Equations and Inequalities 754
10.1 Systems of Linear Equations: Substitution and Elimination 755
Solve Systems of Equations by Substitution • Solve Systems of Equations by Elimination • Identify Inconsistent Systems of Equations Containing Two Variables • Express the Solution of a System of Dependent Equations Containing Two Variables • Solve Systems of Three Equations Containing Three Variables • Identify Inconsistent Systems of Equations Containing Three Variables • Express the Solution of a System of Dependent Equations Containing Three Variables
10.2 Systems of Linear Equations: Matrices 770
Write the Augmented Matrix of a System of Linear Equations • Write the System of Equations from the Augmented Matrix • Perform Row Operations on a Matrix • Solve a System of Linear Equations Using Matrices
10.3 Systems of Linear Equations: Determinants 784
Evaluate 2 by 2 Determinants - Use Cramer's Rule to Solve a System of Two Equations Containing Two Variables • Evaluate 3 by 3 Determinants - Use Cramer's Rule to Solve a System of Three Equations Containing Three Variables • Know Properties of Determinants
10.4 Matrix Algebra 794
Find the Sum and Difference of Two Matrices • Find Scalar Multiples of a
Matrix • Find the Product of Two Matrices • Find the Inverse of a Matrix
- Solve a System of Linear Equations Using an Inverse Matrix
10.5 Partial Fraction Decomposition 813
Decompose P / Q, Where Q Has Only Nonrepeated Linear Factors
- Decompose P / Q, Where Q Has Repeated Linear Factors • Decompose P / Q, Where Q Has a Nonrepeated Irreducible Quadratic Factor - Decompose P / Q, Where Q Has a Repeated Irreducible Quadratic Factor
10.6 Systems of Nonlinear Equations 821
Solve a System of Nonlinear Equations Using Substitution • Solve a System of Nonlinear Equations Using Elimination
10.7 Systems of Inequalities 830
Graph an Inequality • Graph a System of Inequalities
10.8 Linear Programming 838
Set up a Linear Programming Problem • Solve a Linear Programming Problem
Chapter Review 845
Chapter Test 848
Cumulative Review 849
Chapter Projects 850
11 Sequences; Induction; the Binomial Theorem 851
11.1 Sequences 852
Write the First Several Terms of a Sequence - Write the Terms of a Sequence Defined by a Recursive Formula • Use Summation Notation
- Find the Sum of a Sequence
11.2 Arithmetic Sequences 862
Determine Whether a Sequence Is Arithmetic • Find a Formula for an Arithmetic Sequence \bullet Find the Sum of an Arithmetic Sequence
11.3 Geometric Sequences; Geometric Series 868
Determine Whether a Sequence Is Geometric • Find a Formula for a Geometric Sequence • Find the Sum of a Geometric Sequence • Determine Whether a Geometric Series Converges or Diverges • Solve Annuity Problems
11.4 Mathematical Induction 879
Prove Statements Using Mathematical Induction
11.5 The Binomial Theorem 883
Evaluate $\binom{n}{j}$ • Use the Binomial Theorem
Chapter Review 890
Chapter Test 892
Cumulative Review 892
Chapter Projects 893
12 Counting and Probability 894
12.1 Counting 895
Find All the Subsets of a Set • Count the Number of Elements in a Set
- Solve Counting Problems Using the Multiplication Principle
12.2 Permutations and Combinations 900
Solve Counting Problems Using Permutations Involving n Distinct Objects
- Solve Counting Problems Using Combinations • Solve Counting Problems Using Permutations Involving n Nondistinct Objects
12.3 Probability 909
Construct Probability Models • Compute Probabilities of Equally Likely
Outcomes • Find Probabilities of the Union of Two Events • Use the Complement Rule to Find Probabilities
Chapter Review 919
Chapter Test 921
Cumulative Review 922
Chapter Projects 922
A Preview of Calculus: The Limit, Derivative, and Integral of a Function 923
13.1 Finding Limits Using Tables and Graphs 924
Find a Limit Using a Table • Find a Limit Using a Graph
13.2 Algebra Techniques for Finding Limits 929
Find the Limit of a Sum, a Difference, and a Product • Find the Limit of a Polynomial • Find the Limit of a Power or a Root • Find the Limit of a Quotient • Find the Limit of an Average Rate of Change
13.3 One-sided Limits; Continuous Functions 936
Find the One-sided Limits of a Function • Determine Whether a Function Is Continuous
13.4 The Tangent Problem; The Derivative 943
Find an Equation of the Tangent Line to Graph a Function • Find the Derivative of a Function • Find Instantaneous Rates of Change • Find the Instantaneous Speed of a Particle
13.5 The Area Problem; The Integral 950
Approximate the Area Under the Graph of a Function - Approximate Integrals Using a Graphing Utility
Chapter Review 956
Chapter Test 959
Chapter Projects 960
A Review A1
A. 1 Algebra Essentials A1
Work with Sets • Graph Inequalities • Find Distance on the Real Number Line • Evaluate Algebraic Expressions • Determine the Domain of a Variable • Use the Laws of Exponents • Evaluate Square Roots • Use a Calculator to Evaluate Exponents
A. 2 Geometry Essentials A13
Use the Pythagorean Theorem and Its Converse • Know Geometry Formulas • Understand Congruent Triangles and Similar Triangles
A. 3 Polynomials A22
Recognize Monomials • Recognize Polynomials • Add and Subtract Polynomials • Multiply Polynomials • Know Formulas for Special Products
- Divide Polynomials Using Long Division • Work with Polynomials in Two Variables
A. 4 Factoring Polynomials A32
Factoring the Difference of Two Squares and the Sum and Difference of Two Cubes • Factor Perfect Squares •Factor a Second-Degree Polynomial: $x^{2}+B x+C \bullet$ Factor by Grouping \bullet Factor a Second-Degree Polynomial: $A x^{2}+B x+C, A \neq 1 \cdot$ Complete the Square
A. 5 Synthetic Division A41
Divide Polynomials Using Synthetic Division
A. 6 Rational Expressions A45
Reduce a Rational Expression to Lowest Terms • Multiply and Divide Rational Expressions • Add and Subtract Rational Expressions • Use the Least Common Multiple Method • Simplify Complex Rational Expressions
A. 7 nth Roots; Rational Exponents A55
Work with nth Roots • Simplify Radicals • Rationalize Denominators
- Simplify Expressions with Rational Exponents
A. 8 Solving Equations A63
Solve Linear Equations • Solve Rational Equations • Solve Equations by Factoring • Solve Radical Equations
A. 9 Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Job Applications A72
Translate Verbal Descriptions into Mathematical Expressions • Solve Interest Problems • Solve Mixture Problems • Solve Uniform Motion Problems
- Solve Constant Rate Job Problems
A. 10 Interval Notation; Solving Inequalities A81
Use Interval Notation • Use Properties of Inequalities • Solve Inequalities
- Solve Combined Inequalities
A. 11 Complex Numbers A89
Add, Subtract, Multiply, and Divide Complex Numbers
B Graphing Utilities B1
B. 1 The Viewing Rectangle B1
B. 2 Using a Graphing Utility to Graph Equations B3
B. 3 Using a Graphing Utility to Locate Intercepts and Check for Symmetry B5
B. 4 Using a Graphing Utility to Solve Equations B6
B. 5 Square Screens B8
B. 6 Using a Graphing Utility to Graph Inequalities B9
B. 7 Using a Graphing Utility to Solve Systems of Linear Equations B9
B. 8 Using a Graphing Utility to Graph a Polar Equation B11
B. 9 Using a Graphing Utility to Graph Parametric Equations B11
Answers AN1
Photo Credits C1
Index 11

To the Student

As you begin, you may feel anxious about the number of theorems, definitions, procedures, and equations. You may wonder if you can learn it all in time. Don't worry, your concerns are normal. This textbook was written with you in mind. If you attend class, work hard, and read and study this book, you will build the knowledge and skills you need to be successful. Here's how you can use the book to your benefit.

Read Carefully

When you get busy, it's easy to skip reading and go right to the problems. Don't . . . the book has a large number of examples and clear explanations to help you break down the mathematics into easy-to-understand steps. Reading will provide you with a clearer understanding, beyond simple memorization. Read before class (not after) so you can ask questions about anything you didn't understand. You'll be amazed at how much more you'll get out of class if you do this.

Use the Features

We use many different methods in the classroom to communicate. Those methods, when incorporated into the book, are called "features." The features serve many purposes, from providing timely review of material you learned before (just when you need it), to providing organized review sessions to help you prepare for quizzes and tests. Take advantage of the features and you will master the material.

To make this easier, we've provided a brief guide to getting the most from this book. Refer to the "Prepare for Class," "Practice," and "Review" on pages 21-23. Spend fifteen minutes reviewing the guide and familiarizing yourself with the features by flipping to the page numbers provided. Then, as you read, use them. This is the best way to make the most of your textbook.

Please do not hesitate to contact us, through Pearson Education, with any questions, suggestions, or comments that would improve this text. We look forward to hearing from you, and good luck with all of your studies.

Best Wishes!

Michael Sullivan
Michael Sullivan, III

Preface to the Instructor

As professors at both an urban university and a community college, Michael Sullivan and Michael Sullivan, III, are aware of the varied needs of Precalculus students, ranging from those who have little mathematical background and a fear of mathematics courses, to those having a strong mathematical education and a high level of motivation. For some of your students, this will be their last course in mathematics, whereas others will further their mathematical education. This text is written for both groups.

As a teacher, and as an author of precalculus, engineering calculus, finite mathematics, and business calculus texts, Michael Sullivan understands what students must know if they are to be focused and successful in upperlevel math courses. However, as a father of four, he also understands the realities of college life. As an author of a developmental mathematics series, Michael's co-author and son, Michael Sullivan, III, understands the trepidations and skills students bring to the Precalculus course. Michael, III also believes in the value of technology as a tool for learning that enhances understanding without sacrificing math skills. Together, both authors have taken great pains to ensure that the text contains solid, studentfriendly examples and problems, as well as a clear and seamless writing style.

A tremendous benefit of authoring a successful series is the broad-based feedback we receive from teachers and students. We are sincerely grateful for their support. Virtually every change in this edition is the result of their thoughtful comments and suggestions. We are sincerely grateful for this support and hope that we have been able to take these ideas and, building upon a successful first edition, make this series an even better tool for learning and teaching. We continue to encourage you to share with us your experiences teaching from this text.

About This Book

This book utilizes a functions approach to Precalculus. Functions are introduced early (Chapter 1) in various formats: maps, tables, sets of ordered pairs, equations, and graphs. Our approach to functions illustrates the symbolic, numeric, graphic, and verbal representations of functions. This allows students to make connections between the visual representation of a function and its algebraic representation.

It is our belief that students need to "hit the ground running" so that they do not become complacent in their studies. After all, it is highly likely that students have been exposed to solving equations and inequalities prior to entering this class. By spending precious time reviewing these concepts, students are likely to think of the course as a rehash of material learned in other courses and say to themselves, "I know this material, so I don't have to study." This may result in the students developing poor study habits for
this course. By introducing functions early in the course, students are less likely to develop bad habits.

Another advantage of the early introduction of functions is that the discussion of equations and inequalities can focus around the concept of a function. For example, rather than asking students to solve an equation such as $2 x^{2}+5 x+2=0$, we ask students to find the zeros of $f(x)=2 x^{2}+5 x+2$ or solve $f(x)=0$ when $f(x)=$ $2 x^{2}+5 x+2$. While the technique used to solve this type of problem is the same, the fact that the problem looks different to the student means the student is less apt to say, "Oh, I already have seen this problem before, and I know how to solve it." In addition, in Calculus students are going to be asked to solve equations such as $f^{\prime}(x)=0$, so solving $f(x)=0$ is a logical prerequisite skill to practice in Precalculus. Another advantage to solving equations through the eyes of a function is that the properties of functions can be included in the solution. For example, the linear function $f(x)=2 x-3$ has one real zero because the function f is increasing on its domain.

Features in the Third Edition

Rather than provide a list of new features here, that information can be found on pages 21-23.

This places the new features in their proper context, as building blocks of an overall learning system that has been carefully crafted over the years to help students get the most out of the time they put into studying. Please take the time to review the features listed on pages 21-23 and to discuss them with your students at the beginning of your course. Our experience has been that when students utilize these features, they are more successful in the course.

New to the Third Edition

- Retain Your Knowledge This new category of problems in the exercise set are based on the article "To Retain New Learning, Do the Math" published in the Edurati Review in which author Kevin Washburn suggests that "the more students are required to recall new content or skills, the better their memory will be." It is frustrating when students cannot recall skills learned earlier in the course. To alleviate this recall problem, we have created "Retain Your Knowledge" problems. These are problems considered to be "final exam material" that students must complete to maintain their skills. All the answers to these problems appear in the back of the book.
- Guided Lecture Notes Ideal for online, emporium/redesign courses, inverted classrooms or traditional lecture classrooms. These lecture notes assist students in taking thorough, organized, and understandable notes as they watch the Author in Action videos by asking students to complete definitions, procedures, and examples based
on the content of the videos and book. In addition, experience suggests that students learn by doing and understanding the why/how of the concept or property. Therefore, many sections will have an exploration activity to motivate student learning. These explorations will introduce the topic and/or connect it somehow to either a real world application or previous section. For example, when teaching about the vertical line test in Section 1.2, after the theorem statement, the notes ask the students to explain why the vertical line test works by using the definition of a function. This helps students process the information at a higher level of understanding.
- Chapter Projects, which apply the concepts of each chapter to a real-world situation, have been enhanced to give students an up-to-the-minute experience. Many projects are new and Internet-based, requiring the student to research information online in order to solve problems.
- Exercise Sets at the end of each section remain classified according to purpose. The"Are You Prepared?" exercises have been expanded to better serve the student who needs a just-in-time review of concepts utilized in the section. The Concepts and Vocabulary exercises have been updated. These fill-in-the-blank and True/False problems have been written to serve as reading quizzes. Skill Building exercises develop the student's computational skills and are often grouped by objective. Mixed Practice exercises have been added where appropriate. These problems offer a comprehensive assessment of the skills learned in the section by asking problems that relate to more than one objective. Sometimes these require information from previous sections so students must utilize skills learned throughout the course. Applications and Extension problems have been updated and many new problems involving sourced information and data have been added to bring relevance and timeliness to the exercises. The Explaining Concepts: Discussion and Writing exercises have been updated and reworded to stimulate discussion of concepts in online discussion forums. These can also be used to spark classroom discussion.
- The Chapter Review now includes answers to all the problems. We have created a separate review worksheet for each chapter to help students review and practice key skills to prepare for exams. The worksheets can be downloaded from the Instructor's Resource Center.

Changes in the Third Edition

- CONTENT

- Chapter 2, Section 4 A new objective "Find a quadratic function given its vertex and one point" has been added.
- Chapter 2, Section 5 A new example was added to illustrate that quadratic inequalities may have the empty set or all real numbers as a solution.
- Chapter 3, Sections 1 and 4 The content related to describing the behavior of the graph of a polynomial or rational function near a zero has been removed.
- Chapter 3, Section 4 Content has been added that discusses the role of multiplicity and behavior of the graph of rational function as the graph approaches a vertical asymptote.

- ORGANIZATION

- Chapter 3, Sections 5 and 6 Section 5, The Real Zeros of a Polynomial Function and Section 6, Complex Zeros, Fundamental Theorem of Algebra have been moved to Sections 2 and 3, respectively. This was done in response to reviewer requests that "everything involving polynomials" be located sequentially. Skipping the new Sections 2 and 3 and proceeding to Section 4 Properties of Rational Functions can be done without loss of continuity.

Using this Book Effectively and Efficiently with Your Syllabus

To meet the varied needs of diverse syllabi, this book contains more content than is likely to be covered in a typical Precalculus course. As the chart illustrates, this book has been organized with flexibility of use in mind. Even within a given chapter, certain sections are optional and can be omitted without loss of continuity. See the detail following the flow chart.

Foundations A Prelude to Functions

Quick coverage of this chapter, which is mainly review material, will enable you to get to Chapter 1, Functions and Their Graphs, earlier.

Chapter 1 Functions and Their Graphs

Perhaps the most important chapter. Sections 1.6 and 1.7 are optional.

Chapter 2 Linear and Quadratic Functions

Topic selection depends on your syllabus. Sections 2.2, 2.6, and 2.7 may be omitted without a loss of continuity.

Chapter 3 Polynomial and Rational Functions
Topic selection depends on your syllabus. Section 3.6 is optional.

Chapter 4 Exponential and Logarithmic Functions

Sections 4.1-4.6 follow in sequence. Sections 4.7-4.9 are optional.

Chapter 5 Trigonometric Functions

The sections follow in sequence. Section 5.6 is optional.

Chapter 6 Analytic Trigonometry

Sections 6.2 and 6.7 may be omitted in a brief course.
Chapter 7 Applications of Trigonometric Functions Sections 7.4 and 7.5 may be omitted in a brief course.

Chapter 8 Polar Coordinates; Vectors

Sections 8.1-8.3 and Sections 8.4-8.7 are independent and may be covered separately.

Chapter 9 Analytic Geometry

Sections 9.1-9.4 follow in sequence. Sections 9.5, 9.6, and 9.7, are independent of each other, but each requires Sections 9.1-9.4.

Chapter 10 Systems of Equations and Inequalities
Sections 10.2-10.7 may be covered in any order. Section 10.8 requires Section 10.7.

Chapter 11 Sequences; Induction; the Binomial

 TheoremThere are three independent parts: Sections 11.1-11.3, Section 11.4, and Section 11.5.

Chapter 12 Counting and Probability

The sections follow in sequence.

Chapter 13 A Preview of Calculus: The Limit, Derivative, and Integral of a Function

If time permits, coverage of this chapter will provide your students with a beneficial head-start in calculus. The sections follow in sequence.

Appendix A Review

This review material may be covered at the start of a course or used as a just-in-time review. Specific references to this material occur throughout the text to assist in the review process.

Appendix B Graphing Utilities

Reference is made to these sections at the appropriate place in the text.

Third Edition

Textbooks are written by authors, but evolve from an idea to final form through the efforts of many people. It was Don Dellen who first suggested this book and series. Don is remembered for his extensive contributions to publishing and mathematics.

Thanks are due to the following people for their assistance and encouragement to the preparation of this edition:

- From Pearson Education: Anne Kelly for her substantial contributions, ideas, and enthusiasm; Peggy Lucas, who is a huge fan and works tirelessly to get the word out; Dawn Murrin, for her unmatched talent at getting the details right; Peggy McMahon for her organizational skills and leadership in overseeing production; Chris Hoag for her continued support and genuine interest; Greg Tobin for his leadership and commitment to excellence; and the Pearson Math and Science Sales team, for their continued confidence and personal support of our books.
- Bob Walters, Production Manager, who passed away after a long and valiant battle fighting lung disease. He was an old and dear friend - a true professional in every sense of the word.
- Accuracy checkers: C. Brad Davis, who read the entire manuscript and accuracy checked answers. His attention to detail is amazing; Timothy Britt, for creating the Solutions Manuals and accuracy checking answers.
- Michael Sullivan, III would like to thank his colleagues at Joliet Junior College for their support and feedback.

Finally, we offer our grateful thanks to the dedicated users and reviewers of our books, whose collective insights form the backbone of each textbook revision.

Our list of indebtedness just grows and grows. And, if we've forgotten anyone, please accept our apology. Thank you all.

Gary Amara-South Maine Community College
Richard Andrews - Florida A\&M University
Jay Araas - Sheridan College
Jessica Bernards-Portland Community college
Rebecca Berthiaume-Edison State College
Susan Bradley - Angelina College
Michael Brook - University of Delaware
Tim Chappell-Penn Valley Community College
Christine Cole-Moorpark College
Alicia Collins-Mesa Community College
Rebecca Cosner-Spokane Community College
Jerry DeGroot-Purdue North Central
Joanna DelMonaco-Middlesex Community College
Stephanie Deacon-Liberty University
Jerrett Dumouchel—Florida Community College at Jacksonville
Vaden Fitton-North Virginia Community College
Carrie Rose Gibson - North Idaho College
Nina Girard - University of Pittsburgh at Johnstown
Mary Beth Grayson-Liberty University
Scott Greenleaf - South Maine Community College
Donna Harbin - University of Hawaii-Maui
Celeste Hernandez - Richland College
Gloria P. Hernandez-Louisiana State University at Eunice
Maritza Jimenez-Zeljak - Los Angeles Harbor College
Glenn Johnson-Middlesex Community College

Susitha Karunaratne-Purdue University North Central Debra Kopcso-Louisiana State University Yelena Kravchuk - University of Alabama at Birmingham Mary Krohn - Butler University Lynn Marecek - Santa Ana College James McLaughlin - West Chester University Kathleen Miranda - SUNY at Old Westbury Chris Mirbaha-The Community College of Baltimore County Brigette M. Myers - Stanly Community College Karla Neal-Louisiana State University
 Denise Nunley - Maricopa Community Colleges
 Leticia Oropesa-University of Miami
 Laura Pyzdrowski-West Virginia University
 Mike Rosenthal-Florida International University
 Phoebe Rouse - Louisiana State University
 Brenda Santistevan - Salt Lake Community College
 Catherine Sausville-George Mason University
 Ingrid Scott-Montgomery College
 Charlotte Smedberg - University of Tampa
 Leslie Soltis-Mercyhurst College
 Katrina Staley - North Carolina Agricultural and Technical State University
 Sonya Stephens-Florida A\&M University
 John Sumner - University of Tampa
 Steve Szabo-Eastern Kentucky University
 Marilyn Toscano-University of Wisconsin, Superior
 Timothy L. Warkentin - Cloud County Community College
 Hayat Weiss-Middlesex Community College
 Larissa Williamson - University of Florida
 Sharyn Zias - Jamestown Community College

Michael Sullivan
Chicago State University
Michael Sullivan, III
Joliet Junior College

Global Edition

Pearson would like to thank and acknowledge the following people for their work on the Global Edition:

- Contributor:
- Sunila Sharma, Delhi University
- Reviewers:
- Yosum Kurtulmaz, Bilkent University
- Mohd. Hasan Shahid, Jamia Millia Islamia

Prepare for Class "Read the Book"

Feature

Description
Benefit

Every Chapter Opener begins with...

Chapter Opening Article \& Project	Each chapter begins with a current article and ends with a related project. The article describes a real situation.	The Article describes a real situation. The Project lets you apply what you learned to solve a related problem.	305,406
NEW! Internet Based Projects	The projects allow for the integration of spreadsheet technology that students will need to be a productive member of the workforce.	The projects allow the opportunity for students to collaborate and use mathematics to deal with issues that come up in their lives.	305,406
Every Section begins with...			
Learning Objectives 2	Each section begins with a list of objectives. Objectives also appear in the text where the objective is covered.	These focus your studying by emphasizing what's most important and where to find it.	326
Sections contain...			
Preparing for this Section	Most sections begin with a list of key concepts to review with page numbers.	Ever forget what you've learned? This feature highlights previously learned material to be used in this section. Review it, and you'll always be prepared to move forward.	326
Now Work the 'Are You Prepared?' Problems	Problems that assess whether you have the prerequisite knowledge for the upcoming section.	Not sure you need the Preparing for This Section review? Work the 'Are You Prepared?' problems. If you get one wrong, you'll know exactly what you need to review and where to review it!	26,337

Now Work PROBLEMS	These follow most examples and direct you to a related exercise.	We learn best by doing. You'll solidify your understanding of examples if you try a similar problem right away, to be sure you understand what you've just read.	333,
WARNING	Warnings are provided in the text.	These point out common mistakes and help you to avoid them.	360
Exploration and Seeing the Concept	These represent graphing utility activities to foreshadow a concept or solidify a concept just presented.	You will obtain a deeper and more intuitive understanding of theorems and definition.	232,347

In Words
These provide alternative descriptions of select definitions and theorems.

Does math ever look foreign to you? This 343 feature translates math into plain English.

SHOWCASE EXAMPLES

Model It! Examples and Problems

These appear next to information essential for the study of calculus.

These examples provide "how-to" instruction by offering a guided, step-by-step approach to solving a problem.

Pay attention-if you spend extra time now, 102, 334 you'll do better later!

With each step presented on the left and the mathematics displayed on the right, students can immediately see how each step is employed.

These are examples and problems that require you to build a mathematical model from either a verbal description or data. The homework Model It! problems are marked by purple headings.

It is rare for a problem to come in the form, "Solve the following equation". Rather, the equation must be developed based on an explanation of the problem. These problems require you to develop models that will allow you to describe the problem mathematically and suggest a solution to the problem.

Practice "Work the Problems"

Feature

Description

Benefit

Page

'Are You Prepared?' Problems	These assess your retention of the prerequisite material you'll need. Answers are given at the end of the section exercises. This feature is related to the Preparing for This Section feature.	Do you always remember what you've learned? Working these problems is the best way to find out. If you get one wrong, you'll know exactly what you need to review and where to review it!	326,337
Concepts and Vocabulary	These short-answer questions, mainly Fill-in-the-Blank and True/False items, assess your understanding of key definitions and concepts in the current section.	It is difficult to learn math without knowing the language of mathematics. These problems test your understanding of the formulas and vocabulary.	337
Skill Building	Correlated to section examples, these problems provide straightforward practice.	It's important to dig in and develop your skills. These problems provide you with ample practice to do so.	337-339
Mixed Practice	These problems offer comprehensive assessment of the skills learned in the section by asking problems that relate to more than one concept or objective. These problems may also require you to utilize skills learned in previous sections.	Learning mathematics is a building process. Many concepts are interrelated. These problems help you see how mathematics builds on itself and also see how the concepts tie together.	339-340
Applications and Extensions	These problems allow you to apply your skills to real-world problems. They also allow you to extend concepts learned in the section.	You will see that the material learned within the section has many uses in everyday life.	340-342
Discussion and Writing	"Discussion and Writing" problems are colored red. These support class discussion, verbalization of mathematical ideas, and writing and research projects.	To verbalize an idea, or to describe it clearly in writing, shows real understanding. These problems nurture that understanding. Many are challenging but you'll get out what you put in.	342
NEW! Retain Your Knowledge	These problems allow you to practice content learned earlier in the course.	The ability to remember how to solve all the different problems learned throughout the course is difficult. These help you remember	342

Now Work PROBLEMS	Many examples refer you to a related homework problem. These related problems are marked by a pencil and orange numbers.	If you get stuck while working problems, look for the closest Now Work problem and refer back to the related example to see if it helps.	336, 339

Review "Study for Quizzes and Tests"

Feature
Description
Benefit
Page
Chapter Review at the end of each chapter contains...

Things to Know	A detailed list of important theorems, formulas, and definitions from the chapter.	Review these and you'll know the most 399-400 important material in the chapter!
You Should Be able to...	Contains a complete list of objectives by section, examples that illustrate the objective, and practice exercises that test your understanding of the objective.	Do the recommended exercises and you'll 401 have mastery over the key material. If you get something wrong, review the suggested page numbers and try again.
Review Exercises	These provide comprehensive review and practice of key skills, matched to the Learning Objectives for each section.	Practice makes perfect. These problems 401-404 combine exercises from all sections, giving you a comprehensive review in one place.
Chapter Test	About 15-20 problems that can be taken as a Chapter Test. Be sure to take the Chapter Test under test conditions-no notes!	Be prepared. Take the sample practice 404-405 test under test conditions. This will get you ready for your instructor's test. If you get a problem wrong, you can watch the Chapter Test Prep Video.
Cumulative Review	These problem sets appear at the end of each chapter, beginning with Chapter 2. They combine problems from previous chapters, providing an ongoing cumulative review.	These are really important. They will ensure 405 that you are not forgetting anything as you go. These will go a long way toward keeping you primed for the final exam.
Chapter Project	The Chapter Project applies to what you've learned in the chapter. Additional projects are available on the Instructor's Resource Center (IRC).	The Project gives you an opportunity to apply what you've learned in the chapter to the opening article.If your instructor allows, these make excellent opportunities to work in a group, which is often the best way of learning math.
NEW! Internet Based Projects	In selected chapters, a web-based project is given.	The projects allow the opportunity for 406 students to collaborate and use mathematics to deal with issues that come up in their lives.

Resources for Success

Instructor Resources

Additional resources can be downloaded from www.pearsonglobaleditions.com/sullivan.

TestGen ${ }^{\circledR}$

TestGen ${ }^{\circledR}$ (www.pearsonglobaleditions.com/sullivan) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text.

PowerPoint ${ }^{\circledR}$ Lecture Slides

Fully editable slides that correlate to the textbook.

Instructor Solutions Manual

Includes fully worked solutions to all textbook exercises.

Mini Lecture Notes

Includes additional examples and helpful teaching tips, by section.

Online Chapter Projects

Additional projects that let students apply what was learned in the chapter.

Student Resources

Additional resources to help student success:

Chapter Test Prep Videos

Students can watch instructors work through step-by-step solutions to all chapter test exercises from the textbook. These are available on YouTube.

Algebra Review

Four Chapters of Intermediate Algebra review. Perfect for a slower-paced course or for individual review.

Acoustics

amplifying sound, 403
loudness of sound, 355, 405
loudspeaker, 607
tuning fork, 607
whispering galleries, 708

Aerodynamics

modeling aircraft motion, 689-90

Aeronautics

Challenger disaster, 390

Agriculture

farm management, 843
farm workers in U.S., 390-91
field enclosure, 828
grazing area for cow, 598
minimizing cost, 843
removing stump, 661

Air travel

bearing of aircraft, 571,574
flight time and ticket price, 167
frequent flyer miles, 584-85
holding pattern, 521
intersection point of two planes, 134-35
parking at O'Hare International
Airport, 118
revising a flight plan, 592
speed and direction of aircraft, 656, 660

Archaeology

age of ancient tools, 384
age of fossil, 388, 389
age of tree, 389
date of prehistoric man's death, 403

Architecture

brick staircase, 867, 891
Burj Khalifa building, A14-A15
floor design, 865-66, 891
football stadium seating, 867
mosaic design, 867, 891
Norman window, 204, A20
parabolic arch, 204
racetrack design, 710
special window, 204
stadium construction, 867
window design, 204
Area. See also Geometry
of Bermuda Triangle, 598
under a curve, 507
of isosceles triangle, 552
of sector of circle, 415-16, 419
of segment of circle, 610

Art

fine decorative pieces, 437

Astronomy

angle of elevation of Sun, 573
distances of planets from Sun, 861
planetary orbits, 707-08, 711
Earth, 710
Jupiter, 710
Mars, 710
Mercury, 737
Pluto, 711
radius of the Moon, 437

Aviation

modeling aircraft motion, 689-90
orbital launches, 767

Biology

age versus total cholesterol, 398
alcohol and driving, 351, 356
bacterial growth, 382-83, 395
E-coli, 109, 152-53
blood pressure, 521
blood types, 899
bone length, 219
cricket chirping, 206
gestation period, 215
healing of wounds, 340, 355
maternal age versus Down syndrome, 168
muscle force, 661
yeast biomass as function of time, 394-95

Business

advertising, 167, 219
automobile production, 312, 783
blending coffee, A78
car rentals, 159
checkout lines, 918
clothing store, 920
cookie orders, 848
cost
of can, 286-87, 289
of commodity, 313
of manufacturing, 243, 297, 837, A13, A78
marginal, 191, 218
minimizing, 218, 843,848
of production, 108, 313, 810-11, 848
of theater ticket per student, 297
of transporting goods, 119
weekly, 239
cost equation, 63, 142
cost function, 160
average, 92
demand
for candy, 142
for jeans, 167
for PCs, 396
demand equation, 218, 303
discounts, 313
drive-thru rate
at Burger King, 336
at Citibank, 340, 355
earnings of young adults, 754
equipment depreciation, 877
ethanol production, 395
expense computation, A79
Jiffy Lube's car arrival rate, 340-41, 355
managing a meat market, 844
milk production, 396
mixing candy, A78
mixing nuts, A78
new-car markup, A88
orange juice production, 783
personal computer price and demand, 396
precision ball bearings, A13
presale order, 767
product design, 844
production scheduling, 843
product promotion, 64
profit, 811
cigar company, 132
maximizing, 841-42, 843-44
profit function, 88, 191-92
rate of return on, 379
restaurant management, 767
revenue, 191, 195-64, A78
advertising and, 167
airline, 844
from calculator sales, 181
of clothing store, 799-800
daily, 192
from digital music, 132
instantaneous rate of change of, 950, 958
maximizing, 191-92, 203
monthly, 191-92
from seating, 878
theater, 768
revenue equation, 142
salary, 867
gross, 87
increases in, 877, 891
sales
commission on, A88
of movie theater ticket,
755, 759-60, 767
net, 40
salvage value, 403
straight-line depreciation, 156-57, 160
supply and demand, 157-58, 160
tax, 297
toy truck manufacturing, 837
transporting goods, 837
truck rentals, 63, 161
unemployment, 921
wages
of car salesperson, 63

Calculus

area under a curve, 507
carrying a ladder around a corner, 522
maximizing rain gutter construction, 552
projectile motion, 522
Simpson's rule, 204

Carpentry. See also Construction

pitch, 65

Chemistry

alpha particles, 723
decomposition reactions, 389
drug concentration, 288
gas laws, 142
pH, 354
purity of gold, A79
radioactive decay, $388,389,396,404$
radioactivity from Chernobyl, 389
reactions, 204
salt solutions, A79
sugar molecules, A80
volume of gas, A88

Combinatorics

airport codes, 901
binary codes, 920
birthday permutations, 903, 907, 914-15, 918, 920
blouses and skirts combinations, 899
book arrangements, 907
box stacking, 907
code formation, 907
combination locks, 908
committee formation,
905, 907, 908, 920
Senate committees, 908
flag arrangement, 906, 920
letter codes, 901, 921
letter combinations, 920
license plate possibilities, 907, 920, 921
lining people up, 902,907
number formation, 899, 907, 908, 921
objects selection, 908
seating arrangements, 920
shirts and ties combinations, 899
telephone numbers, 920
two-symbol codewords, 898
word formation, 905-06, 907, 921

Communications

cell phone plan, 74
cell phone service, 118, 148, 161
cell phone towers, 397
installing cable TV, 137
long distance
comparing phone companies, 218
international call plan, 161
phone charges, 160
satellite dish, 698, 700
spreading of rumors, 340,355
Touch-Tone phones, 556-57, 608

Computers and computing

Dell PCs, 396
graphics, 659, 812-13
households without personal computers, 390
JPEG image compression, 812
laser printers, A79
LCD monitors, 218
social media, 812
three-click rule for web design, 812
website map, 811
Word users, 390

Construction

of box, 828
closed, 147
open, 137
of brick staircase, 891
of can, 301
of coffee can, A80
of cylindrical tube, 828
of enclosures
around garden, A79
around pond, A79
maximizing area of, 198-99, 203
of fencing, 198-99, 203, 828
minimum cost for, 289
of flashlight, 700
of headlight, 700
of highway, 574, 585, 611
installing cable TV, 137
of open box, 179
pitch of roof, 575
of rain gutter, 204, 430, 552, 565-66
of ramp, 584
access ramp, 64
of rectangular field enclosure, 203
sidewalk area, 438
of stadium, 204, 867
of steel drum, 289
of swimming pool, A21
of swing set, 593
of tent, 597
TV dish, 700
vent pipe installation, 710

Crime

income and, 398

Cryptography

matrices in, 811

Decorating

Christmas tree, A15-A16

Demographics

birth rate
mother's age and, 206
of unmarried women, 191
diversity index, 354-55
life expectancy, A88
marital status, 900
mosquito colony growth, 388-89
population. See Population rabbit colony growth, 860

Design

of awning, 585-86
of box with minimum surface area, 289
of fine decorative pieces, 437
of Little League Field, 421
of water sprinkler, 419

Direction

of aircraft, 660
compass heading, 660
for crossing a river, 660, 661
of fireworks display, 722
of lightning strikes, 722
of motorboat, 660
of swimmer, 688

Distance

Bermuda Triangle, A21
bicycle riding, 97
from Chicago to Honolulu, 508
circumference of Earth, 421
between cities, 414-15, 419
between Earth and Mercury, 586
between Earth and Venus, 586
from Earth to a star, 573-74
of explosion, 723
height
of aircraft, 584, 586
of bouncing ball, 877,891
of bridge, 584
of building, 574, 575, 576
of cloud, 569
of Eiffel Tower, 573
of embankment, 574
of Ferris Wheel rider, 521
of Great Pyramid of Cheops, 586, A21
of helicopter, 582, 611
of hot-air balloon, 574
of Lincoln's caricature on Mt. Rushmore, 574
of monument, 574
of mountain, 581, 584
of statue on building, 569-70
of tree, 437
of Willis Tower, 574
from home, 97
from Honolulu to Melbourne, Australia, 508
of hot-air balloon
to airport, 612
from intersection, 40
from intersection, 40, 136
length
of guy wire, 592
of mountain trail, 574
of ski lift, 584
limiting magnitude of telescope, 403
to the Moon, 584
nautical miles, 420
pendulum swings, 873,877
to plateau, 573
across pond, 573
range of airplane, A80
reach of ladder, 573
of rotating beacon, 474-75
at sea, 581-82, 585
of ship from shore, 573
to shore, 585, 610
between skyscrapers, 575
sound to measure, A71
to tower, 586
traveled by wheel, A20
between two moving vehicles, 40
toward intersection, 136
between two objects, 574
viewing, 437
visibility of Gibb's Hill Lighthouse beam, 570-71, 576, A22
visual, A21
walking, 97
of water tower to building, 900
width
of gorge, 572
of Mississippi River, 575
of river, 568, 610

Economics

Consumer Price Index (CPI), 380
demand equations, 303
earnings of young adults, 754
federal deficit, 379, 403
income versus crime rate, 398
inflation, 379-80
IS-LM model in, 768
marginal propensity to consume, 878
multiplier, 878
participation rate, 88
personal computer price and demand, 396
poverty rates, 301
poverty threshold, 40
relative income of child, 811
unemployment, 921

Education

admission probabilities, 921
age distribution of community college, 921
college costs, 379,877
college tuition and fees, 810
degrees awarded, 897
doctoral degrees awarded, 918
faculty composition, 918
funding a college education, 403
grade computation, A88
grade-point average and video games, 167
IQ tests, A88
learning curve, 341,355
maximum level achieved, 850
multiple-choice test, 907
Spring break, 843
student loan, 148
interest on, 810
true/false test, 907

Electricity

alternating current (ac), 491, 542
alternating current (ac) circuits, 466, 484
alternating current (ac) generators, 466
charging a capacitor, 608
cost of, 116-17
current in $R C$ circuit, 341
current in $R L$ circuit, 341,355
impedance, A95
Kirchhoff's Rules, 768, 783
parallel circuits, A95
resistance in, 274
rates for, 63-64, A88
resistance, 142, 143, 274, A52, A54
due to a conductor, 148
voltage
foreign, A13
U.S., A13

Electronics

loudspeakers, 607
microphones, 50
sawtooth curve, 552, 608

Energy

ethanol production, 395
heat loss
through wall, 140
through window, 147
nuclear power plant, 722-23
solar, 50, 668, 700
thermostat control, 131-32

Engineering

bridges
clearance, 466
Golden Gate, 200-01
parabolic arch, 218, 700-01
semielliptical arch, 710, 751
suspension, 204, 700
crushing load, A71
drive wheel, 611
Gateway Arch (St. Louis), 701
grade of road, 65
horsepower, 142
lean of Leaning Tower of Pisa, 585
maximum weight supportable by pine, 139
moment of inertia, 557
piston engines, 436-37
product of inertia, 552
road system, 624
robotic arm, 678
rods and pistons, 593
rod tolerance, 215
safe load for a beam, 143
searchlight, 530, 700, 751
whispering galleries, 710

Entertainment

banquet hall rental, 843
cable subscribers, 398
Demon Roller Coaster customer rate, 341
movie theater, 507
theater revenues, 768

Environment

endangered species population, 340
lake pollution control laws, 860
oil leakage, 312
Exercise and fitness. See also Sports
heartbeats during exercise, 153-54
for weight loss, A88
Finance. See also Investment(s)
balancing a checkbook, A13
bills in wallet, 921
calculator sales revenue, 181
clothes shopping, 849
college costs, 379,877
computer system purchase, 379
cost
of car rental, 119
of driving a car, 63
of electricity, 116-17
of fast food, 767
minimizing, 218, 289
of natural gas, 118-19
of RV rental, 220
of tattoo, 685
of trans-Atlantic travel, 87, 95-96
of triangular lot, 597
cost equation, 142
cost function, 160
cost minimization, 191
credit cards
balance on, 820
debt, 860
interest on, 379
minimum payments for, 119-20
payment, 860
demand equation, 203, 220
depreciation, 340, 399
of car, 371, 406
division of money, A73-A74, A78
electricity rates, 63-64
federal income tax, A88
financial planning, 767, 780, 783-84, 834-35, 836, 838, 844, A73-A74, A78
foreign exchange, 313
future value of money, 243
gross salary, 87
international call plan, 161
life cycle hypothesis, 205
loans, A78
car, 860
interest on, 148, 810, A73
repayment of, 379
student, 810
mortgages
fees, 119
interest rates on, 379
payments, $138,141,147$
second, 379
national debt, 108-09
price appreciation of homes, 379
prices
demand vs., 218
of fast food, 769
for soda and hot dog combinations, 161 refunds, 767
rents and square footage, 205
revenue equation, 142
revenue maximization, 191, 197-98
rich man's promise, 878
salary calculation, 313
salary options, 878-79
saving
for a car, 379
for a home, 877
savings accounts interest, 379
sinking fund, 877
taxes, 160
e-filing returns, 119
federal income, 119, 325
luxury, 160
used-car purchase, 379
water bills, A88

Food and nutrition

animal, 844
calories in fast foods, 76-77
candy, 166
colored candies, 909-10, 921
cooler contents, 921
cooling time of pizza, 389
fast food, 767, 769
Girl Scout cookies, 918
hospital diet, 768, 783
"light" foods, A88
milk production, 396
number of possible meals, 897-98
pig roasts, 390
raisins, 166
warming time of Beer stein, 389

Forestry

wood product classification, 388

Games

die rolling, 910-11, 912, 921
grains of wheat on a chess board, 878
Powerball, 921
Gardens and gardening. See also Landscaping
enclosure for, A79

Geography

area of Bermuda Triangle, 598
area of lake, 597, 611
grade of a mountain trail, 829
inclination of hill, 669
inclination of mountain trail, 568-69, 610
width of a river, 568

Geology

earthquakes, 355-56

Geometry

angle between two lines, 542
balloon volume, 312
circle
area of, 597, A78
area of sector of, 415-16, 419
circumference of, A7, A12, A78
equation of, 794
inscribed, 135-36, 599
length of chord of, 593
radius of, 827
collinear points, 793
cone volume, 142,313
cube
length of edge of, 257
surface area of, A13
volume of, A13
cylinder
inscribing in cone, 137
inscribing in sphere, 136
volume of, 142, 313
Descartes's method of equal roots, 828
equation of line, 793
ladder angle, 612
polygon
area of, 794
number of sides of, 179
quadrilateral area, 612
rectangle
area of, $87,134,218,420,711, \mathrm{~A} 12$
dimensions of, 218, 827
inscribed in semicircle, 136, 553
perimeter of, A12
semicircle inscribed in, 136
semicircle area, 597, 612
sphere
surface area of, A12
volume of, A12
square
area of, A20, A78
perimeter of, A78
surface area
of balloon, 312
of cube, A13
of sphere, A12
triangle
area of, 597, 612, 794, A12
circumscribing, 587
equilateral, A12
inscribed in circle, 136
isosceles, $87,827,828$
Pascal's, 860
perimeter of, A12
right, 572
sides of, 613
volume of paralleliped, 684

Government

federal deficit, 403
federal income tax, 88, 119, 325, A88
first-class mail charge, 120
national debt, 108-09
stimulus package (2009), 379

Health. See also Medicine
breast cancer survival rate, 396
cigarette use among teens, 64
expenditures on, 88
ideal body weight, 325
life cycle hypothesis, 205
pancreatic cancer survival rate, 340

Home improvement. See also Construction

painting a house, 769
painting a room, 475

Investment(s)

annuity, 874-75, 877
in bonds, 844
EE Series, 379
Treasuries, 783, 784, 834-35, 836, 838
Treasury notes $v s$. Treasury
bonds, 780
zero-coupon, 376, 380
in CDs, 375, 844
compound interest on, 372-75, 379, 467, 929
diversified, 768-69
division among instruments, A78
doubling of, 377, 380
in fixed-income securities, 844
433(K), 877, 891
growth rate for, 379
IRA, 379, 874-75, 877
in mutual fund, 392-93
return on, 379, 843, 844
in stock
appreciation, 379
beta, 150, 221-22
NASDAQ stocks, 907
NYSE stocks, 907
portfolios of, 900
price of, 878
time to reach goal, 379,380
tripling of, 377, 380

Landscaping. See also Gardens and gardening

pond enclosure, 218
removing stump, 661
tree cutting, 584, 783
watering lawn, 419

Law and law enforcement

motor vehicle thefts, 918
violent crimes, 88

Leisure and recreation

cable TV, 137
centrifugal force ride, 419
community skating rink, 148
Ferris wheel, 71, 420, 521, 586, 607
gondola, 419
swing displacement, 613
video games and grade-point average, 167

Marketing. See Business

Measurement

optical methods of, 530
of rainfall, 668

Mechanics. See Physics

Medicine. See also Health
blood pressure, 521
breast cancer survival rate, 396
drug concentration, 108, 288
drug medication, 340, 355
healing of wounds, 340,355
pancreatic cancer, 340
spreading of disease, 404

Meteorology

weather balloon height and atmospheric pressure, 393-94

Miscellaneous

bending wire, 828
biorhythms, 466
carrying a ladder around a corner, 474, 522
citrus ladders, 867
cross-sectional area of beam, 87-88, 95
curve fitting, 768, 782, 847
drafting error, 40
pet ownership, 918
rescue at sea, 581-82
rooms in housing units, 87
surface area of balloon, 312
surveillance satellites, 575-76
volume of balloon, 312
window dimensions, 179
wire enclosure area, 136
Mixtures. See also Chemistry
blending coffees, 837, 848 , A74-A75, A78
blending teas, A78
cement, A80
mixed nuts, 767, 837, 848, A78
mixing candy, A78
solution, 767
water and antifreeze, A79

Motion. See also Physics

catching a train, 752
on a circle, 419
of Ferris Wheel rider, 521
of golf ball, 95,522
minute hand of clock, 418
objects approaching
intersection, 748
of pendulum, 608
revolutions of circular disk, A20
simulating, 742-43
tortoise and the hare race, 827
uniform, 136, 748, A75-A77, A78-A79

Motor vehicles

alcohol and driving, 351, 356
approaching intersection, 748
automobile production, 312, 783
automobile theft, 918
average car speed, A80
brake repair with tune-up, 921
braking load, 669, 688
crankshafts, 585
depreciation of, 305, 371, 399, 406
distance between, 437
with Global Positioning System (GPS), 403
loans for, 860
miles per gallon, 205-06
new-car markup, A88
RV rental cost, 220
spin balancing tires, 420
stopping distance, 88, 191, 325
used-car purchase, 379
windshield wiper, 419

Music

iPod storage capacity for, 161
revenues from, 132

Navigation

avoiding a tropical storm, 592
bearing, 571, 591
of aircraft, 571,574
of ship, 574,611
charting a course, 661
commercial, 584-85
compass heading, 660
correct direction for crossing river, 660
error in
correcting, 589-90, 611
time lost due to, 585
rescue at sea, 581-82, 584
revising a flight plan, 592

Oceanography

tides, 485

Optics

angle of incidence, 522-23
angle of refraction, 522-23
bending light, 523
index of refraction, 522-23
intensity of light, 142
laser beam, 573
laser projection, 552
lensmaker's equation, A54
light obliterated through glass, 340
magnitude of telescope, 403
measurements using, 530
mirrors, 723
reflecting telescope, 700

Pediatrics

height vs. head circumference, 196, 325

Pets

dog roaming area, 420

Pharmacy

vitamin intake, 768, 784

Photography

camera distance for full-body shot, 574

Physics

angle of elevation of Sun, 573
bouncing balls, 891
braking load, 669, 688
damped motion, 603-04
direction of aircraft, 660
Doppler effect, 289
falling objects, 141
force, 659, A78
muscle, 661
resultant, 659
of wind on a window, 140, 142
gravity, 274, 297
on Earth, 87, 325
on Jupiter, 87
harmonic motion, 602, 607, 611
heat loss through a wall, 140
heat transfer, 522
horsepower, 142
inclination of mountain trail, 568-69
inclination of ramp, 661
intensity of light, 142
kinetic energy, 143, A78
maximum weight supportable by pine, 139
moment of inertia, 557
motion of object, 602, 744
Newton's law, 141
pendulum motion, 419, 607, 608, 873 ,
A62, A71
period, 132, 326
simple pendulum, 141
pressure, 142, A78
product of inertia, 552
projectile motion, 181, 199-200, 203-04, 436, 437-38, 522, 547, 552, 557, 741-42, 747, 748, 749, 752
artillery, 513
hit object, 748
thrown object, 747
rate of change
average, 960
instantaneous, 946, 949
safe load for a beam, 143
simulating motion, 742-43
sound to measure distance, A71
static equilibrium, 657, 660, 661, 688, 689
static friction, 661
stopping distance, 191
stress of materials, 143
stretching a spring, 142
tension, 657, 660, 688, 689, 883
thrown object, 195, 205,
655, 947-48, 949
truck pulls, 660
uniform motion, 136, 748, 752, A75-A77, A78-A79
velocity down inclined planes, A62
vertically propelled object, 179, 195
vibrating string, 142
weight, $142,147,656,660$
effect of elevation on, 96
work, 678, A78

Play

wagon pulling, 659, 666, 667
Population. See also Demographics
bacterial, 388, 389, 390, 395
decline in, 389
of divorced people, 201-02
E-coli growth, 109, 152-53
of endangered species, 340,390
of fruit fly, 387
as function of age, 87
growth in, 388, 389
insect, 274, 388
of rabbit colony, 860
of trout, 860
of United States, 370, 396-97, 893
of world, 371, 397, 403, 851
future of, 960

Probability

checkout lines, 918
classroom composition, 918
"Deal or No Deal" TV show, 894
exponential, 336, 340, 355
gender composition of 35 -child
family, 912
household annual income, 918
Monty Hall Game, 922
Poisson, 341
"Price is Right" games, 918
of shared birthdays in room of n people, 391
tossing a fair coin, 909, 911
of winning a lottery, 919

Psychometrics

IQ tests, 215

Pyrotechnics

fireworks display, 722
Rate. See also Speed
of car, 419
catching a bus, 747-48
catching a train, 747
current of stream, 768
of emptying
oil tankers, A80
a pool, A80
a tub, A80
to keep up with the Sun, 420
miles per gallon, 205-06
revolutions per minute of bicycle wheels, 419
of pulleys, 421
speed
average, A80
of current, A78-A79
of motorboat, A78-A79
of moving walkways, A79
of plane, A80

Real estate

commission schedule, A88
cost of triangular lot, 597
ground area covered by building, 597-98
price appreciation of homes, 379
rents and square footage, 205
valuing a home, 33, 73

Recreation

bungee jumping, 297
Demon Roller Coaster customer rate, 341 online gambling, 918

Security

security cameras, 573

Seismology

calibrating instruments, 751
Sequences. See also Combinatorics
ceramic tile floor design, 865-66
Drury Lane Theater, 867
Fibonacci, 860
football stadium seating, 867
seats in amphitheater, 867

Speed

of aircraft, 660
angular, 419, 491
of current, 420, 848
of cyclists moving in opposite directions, A80
as function of time, 97,136
of glider, 610
ground, 660
instantaneous
of ball, 947-48, 949, 958
on the Moon, 949-50
linear, 416-17
on Earth, 419, 420
of Moon, 420
of motorboat, 660, A76-A77
revolutions per minute of pulley, 420
of rotation of lighthouse beacons, 491
of swimmer, 688
of truck, 573
of wheel pulling cable cars, 420
wind, 767

Sports

baseball, 748-49, 908, 920
diamond, 39
dimensions of home plate, 597
field, 592
Little League, 40, 421
on-base percentage, 162-63
stadium, 592
World Series, 908
basketball, 908
free throws, 95, 575
granny shots, 95
biathlon, A80
bungee jumping, 297
exacta betting, 921
football, 710, 752, 908, A79
golf, 918
distance to the green, 591
putts, 398-99
sand bunkers, 513
hammer throw, 492
Olympic heroes, A80
pool shots, 576
races, 825, 827-28, A80
relay runners, 920
swimming, 613, 688
tennis, A79

Statistics. See Probability

Surveys

of appliance purchases, 899
data analysis, 896,899
stock portfolios, 899
of summer session attendance, 899
of TV sets in a house, 918

Technology. See also Computers and computing

Blu-ray drive, 419
DVD drive, 419
iPod storage capacity for music, 161

Temperature

of air parcel, 867
body, A13
conversion of, 313,325
cooling time of pizza, 389
cricket chirping and, 206
measuring, 64, 132
after midnight, 243
monthly, 484-85, 491
of portable heater, 403
relationship between scales, 132
sinusoidal function from, 480-81
of skillet, 403
warming time of Beer stein, 389
wind chill factor, 404

Tests and testing

IQ, A88

Time

for Beer stein to warm, 389
for block to slide down inclined plane, 436
Ferris Wheel rider height as function of, 521
to go from an island to a town, 137
hours of daylight, 482-83, 485-86, 506-07
for pizza to cool, 389
of sunrise, 420, 507
of trip, 437, 451

